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Abstract. The objective of this work is to present a theory and to propose a numerical
scheme for the elastoplastic with damage analysis of thick plates, subjected to a cyclic
loading. The theory is based on the work done by Lemaitre (1992) and it is based on the
thermodynamics of irreversible processes. The elastoplastic model considers a nonlinear
isotropic and cinematic hardening law, which depends on the accumulate plastic
deformation and presents a saturation level in order to characterize a stabilization of the
hardening phenomena. Moreover, the model considers the damage to be isotropic. With the
objective of solving thick plate problems, we make use of a higher order plate theory. The
discretization of the cyclic elastoplastic with damage problem employs: the Galerkin finite
element method, for the discretization of the geometric domain; and the generalized
trapezoidal integration rule for the time evolution process. In order to integrate the local
evolution equations we make use of an "elastic with damage predictor with a plastic
corrector scheme". This algorithm, presented by Simo & Taylor (1986) and generalized by
Benallal et al. (1988), belongs to the class of the "return mapping algorithms", presents a
quadratic convergence rate, and is quite robust.
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1. INTRODUCTION

Physically, degradation of the material properties is the result of initiation, growth and
coalescence of microcracks or microvoids. In the particular case of isotropic damage there
is no dependence of the given plane, with the normal 

*

n , thus, the damage in a point M  is
given by
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δ
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Let δSD  be the effective area of the intersections of all microcracks or microcavities
which lie in δS . The failure is assumed to occur for D DC= , DC <1, through a process of
instability. In agreement with the effective stress concept (Y. N. Robotnov, 1968),
considering the 1-D damaged element loaded by a force 

*

*

F Fn= , the uniaxial effective
stress is given as:

~σ =
−
F

S SD

 . (2)

2. DESCRIPTION OF THE PROBLEM

Here, we define the following sets:
Γu  - is the part of the boundary with prescribed displacement, i.e., 

*

*

u u t= � � ;

Γt  - is the part of the boundary with prescribed traction, i.e., σ*

*

n t= ;
Ω  - is the interior of the domain of the body and
t  - is the load control parameter.

2.1. Formulation of the Problem (Thermodynamics and Micromechanics of Damage)

From the Virtual Power Principle we have:

σ ε⋅ = ⋅ + ⋅� � �*
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From the Conservation of Energy Principle, for the particular case of isothermal
processes, we have

ρ�e = ⋅σ D  , (4)
where �e  is the specific internal energy rate; ρ  is the specific mass and D  is the rate of
deformation tensor. In the particular case of isothermic process, the Clausius Duhen
inequality reduces to dS v dt v� � ≥ ∀ ⊂0    Ω . The entropy may be defined as

S v sdv
v

� � = � ρ , where s  is the specific entropy. Form the method of local state equations,

we assume the existence of the density of the free energy potential which we denote by Ψ ,
where:

Ψ Ψε ε α ε α− =p er D r D, , , , , ,� � � �  . (5)

Here ε ε εe p= − , where εe  and ε p  are the elastic and plastic part of the strain tensor
ε ; r  is the strain of isotropic hardening; α  is the back strain tensor; and D the damage

variable. The function Ψ εε αe r D, , ,� �  represent the volume density of free energy potential.

This density is defined by Ψ = −e Ts . Thus, we derive σ = ∂Ψ ∂ερ  .
We consider the following particular expression for the density of the free energy

potential:

ρ χ γΨ = ⋅ − + +�
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where R∞  and b  are material parameters which characterize the isotropic strain hardening
phenomenon; χ ∞  and γ  are material parameters which characterize the nonlinear
kinematic hardening phenomenon;

C II I I= + ⊗2µ λ   ;   II ijrs ir js is jr= +δ δ δ δ� 
 2   ;   I I⊗ =� �ijrs is jrδ δ   ; (7)
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     and     λ ν ν ν= + −E 1 1 2� �� �  . (8)

The Law of elasticity coupled with damage, in the particular case where we have an
equal behavior under compression and tension, is given by σ = ∂Ψ ∂ερ e . The associated

scalar stress is given by R r= ∂Ψ ∂ρ . The back stress χD  is given by χD = ∂Ψ ∂αρ . The

dual variable Υ , associated with the damage variable D  is Υ = ∂Ψ ∂ρ D . The dual vector
*

Θ , associated with the gradient of the damage vector 
*

∇ D  is given by 
* *

Θ = ∂Ψ ∂∇ρ D .

Where kD C= β" 2 , β  has the dimension of surface energy, "C  is the characteristic length of

the material. For convenience, we define Υ Υ= − . The elastic strain energy density
increment of the material, for the known damage, is

d de
eω ε= σσ  . (9)

Thus, replacing σ = ∂Ψ ∂ερ e  into Eq. (9) and integrating, we will obtain
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 . (10)

2.2. Kinetic Law of Damage Evolution

In order to describe a dissipative process, we need to introduce complementary kinetic
laws. These kinetic laws are obtained by introducing a pseudo-potential of dissipation and
by applying to this pseudo-potential the hypothesis of normal dissipation. The unified
formulation of Damage Laws assumes the existence of a pseudo potential of dissipation

F R r D DD eσ χ ε α, , , ; , , , ,Υ
*

∇ → ℜ� 
 . It is a scalar continuous function, convex with respect

to the variable σ χ, , ,R D Υ� � . The complementary laws, which describe the dissipative

process, are then derived from this potential by the normality rule of generalized standard
materials. These complementary equations are given by the following set of evolution laws:

� Plastic evolution equations
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σ

p F
= ∂
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F

R
= − ∂

∂
λ   ,   � �α

χ
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∂
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F
D  ; (11)

� Damage evolution equation

� �D
F

= ∂
∂Υ

λ  . (12)

2.3. Constitutive Equation of the Cycle Elastoplastic with Damage

The loading function is given by:
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The accumulated plastic strain �p  is such that � �p D= −λ 1� � . The evolution laws for �R ,

�χD , �ε p  and �D  may be written in an incremental form, by integrating these rate equations
between tn  and tn+1 . In this case, we have:

R R Rn n+ = +1 ∆  ,   χ χ χn
D

n
D D

+ = +1 ∆  ,   D D Dn n+ = +1 ∆    and   ε ε εn
p

n
p p

+ = +1 ∆  ; (14)

where   ∆ ∆R b R Rn= −∞ +θ λ� �   ,   R R Rn n n+ += − +θ θ θ1 1� �    θ ∈ 01,� �   , (15)
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The two additional equations that we must impose are:
� The elastic strain versus stress constitutive eqn. at tn+1
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e
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� The von Mises yield criterion
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2.4. Set of nonlinear equations

Let
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q R D Dn n
D

n n n n
p= ∇+ + + + + +∆λ ε, , , , , ,1 1 1 1 1 1χ σ� 
 . The objective is to det. 

*
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following set of equations. Is satisfied:
g qi

*� � = 0    ,   i =1 6,..., (23)
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3. THICK PLATE THEORY

The classic theories (of first order) of plates presented by (Timoshenko and
Woinowsky-Krieger, 1959) and by (Reissner, 1945; Mindlin, 1951) are not able to describe



properly the plastification of the cross section of thick plates. With the objective of
improving the description of the elastoplastic with damage front on the cross section, we
make use of higher order theory (Costa Jr., 1998).

The theory incorporates a displacement field with the following characteristics:
� Quadratic variation of the transversal shear stress;
� Linear variation of the normal deformation;
� Consideration of the three dimensional Hooke Law for the elastic constitutive

equation.
The field of displacement is given by 

* * * *

u u e u e u ex x y y z z= + + , being 
*

ex , 
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ey  and 
*

ez  the

unitary vectors that form the base of the global Cartesian system and
u x y z u x y z x y z x yx y y, , , , ,*� � � � � � � �= + +θ θ3 ,

u x y z v x y z x y z x yy x x, , , , ,*� � � � � � � �= − −θ θ3  ,

u x y z w x y z w x yz , , , ,*� � � � � �= + 2  ; (25)

as a result, the infinitesimal strain tensor is given as:
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These components may be written as (Batoz et al., 1992):
ε xx xx

o
xx
o

xxe z z= + ℵ + ℵ3 *   ;   ε yy yy
o
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yye z z= + ℵ + ℵ3 *   ;   ε zz nnze=   ; (28)
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3 * *  ;
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zyz= + 2 *  . (29)

Integrating the first member of the Eq. (3) in z , z h h∈ − 2 2,� � , h  - the thickness of the

plate, we obtain:
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A

.(30)

The generalized loads, associated with the theory, can be expressed as:

� The membrane loading, given in force by unit of length (width).
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� The bending for unit of length (width).
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� The shear loading for unit length (width).
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� The normal loading for unit length (width).
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Integrating the first part of the second member of the Eq. (3) in z , z h h∈ − 2 2,� � ,

considering that 
*

*

f g cte= =ρ , 
*

g  - the vectorial acceleration of the gravity, we obtain:
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for the second part of the second member, we derive:
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4. ALGORITHM

In this section we present a return mapping algorithm, already exposed by Rossi &
Alves (1996), that enable us to integrate the fully coupled elastoplastic with damage
constitutive equations. This proposed algorithm decomposes the problem into two parts.
The former consists in the global equilibrium equations and is showed in the finite element
formulation and the second deals with the local integration of the constitutive equations.
However, in order  to perform the integration of the global equilibrium equations we must
derive the consistent tangent operator J .

4.1. Global Equilibrium Equations

The basic problem in nonlinear analysis is based (Bathe, 1982), in general, on the
consideration of the equilibrium configuration at time tn+1 . The external forces, 

*
Fen+1 , are

generally “time” dependent and the equilibrium state can be written as 
* *
Fe Fin n+ +− =1 1 0 ,

where 
*
Fin+1  is the internal forces.

With the objective of solving the nonlinear equations associated with our problem, we
make use of the Newton-Raphson method. Now, and formulate the problem as:
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h u*� � = 0  , (39)
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* * * * *
h u Fe u Fi un n

* * *� � � � � �= − =+ +1 1 0 , then this method consist in the expansion of 
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h u*� �

in a Taylor series where we keep only the first order term. Moreover, if we denote
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the method may be expressed as
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 , (41)
where K  is the tangent stiffness matrix. The update procedure is then given by
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Here, we adopt the following convergence criteria: 
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1 *  at convergence. Based on an incremental approach, the tangent stiffness can be
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where B  is the strain-displacement matrix given by:
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and J  the tangent operator. In the first iteration we consider 
* *

u un n+ ≈1
0 * .

4.2. Local Integration

In order to simplify the notation while describing the algorithm we introduce two

vectors: 
*

Q R Dp D= εε χ, , ,� �   and  
*

*

q Q= σσ, ,λ� 
 . Thus, the evolution equations early

presented can be written in a compact form as

� � ,
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Q G Q= λ σ� 
  . (48)

Making use of an incremental form, we obtain ∆ ∆
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Q G Qn n− =+ +λ θ θσ ,� 
 0  ,



where ∆ $ $ $� � � � � �= −+n n1
  and  $ $ $� � � �� � � �n n n+ += − +θ θ θ1

1
  as  θ ∈ 0 1, .

(i) Given ε n+1 , we assume a purely elastic increment, thus ∆Q = 0  and ∆λ = 0 . The trial

tension is then computed by σ ε=C * , where ε ε ε* = −+n n
p

1 .

(ii) With the trial tension in (i) we check the yield function. If f Qn n
~ ,σ + <1 0

*

� 
  then

hypothesis (i) is correct and the local procedure is complete with no updating in the

remaining components of 
*

q . However, if f Qn n
~ ,σ + ≥1 0

*

� 
  then we must perform an

elastoplastic with damage correction.
(iii) In order to perform the plastic corrections, we employ the incremental equations. Now,

in the incremental procedure we must satisfy at time tn+1  the yield criteria, the
elasticity law and the evolution equations. With these three conditions we derive the
following set of nonlinear equations (Eqns. (24)):
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This system is also solved by the Newton-Raphson method, i.e.
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and convergence criteria is given by 
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4.3. Determination of the Tangent Operator J

When the local integration algorithm has converged, the corresponding consistent
operator associated with the discretization may be determined by letting all the variables 
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q
and ε  vary slightly around the solution at the converged solution at iteration n +1. Thus,
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Now, in order to compute the above differentiation we must enforce the evolution
equations. These evolution equations may be written in an incremental form as:
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From these considerations we determine:
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iu v d+ + ⋅� 1 1ε ε( ) ( )∆ Ω
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 . (53)

The stiffness matrix can be finally obtained by integrating Eq. (43) in z , z h h∈ − 2 2,� � .



5. EXEMPLE

In this section we solve the problem consisting of a plate with thickness h =28mm,
width b=100mm, length " =200mm as illustrated in Fig. 1 with both ends clamped and
subjected, at the mid span, to a cycle prescribed displacement. The prescribed displacement
field where u t u t( ) sin( )= ∆ 2π ,with ∆u =3.3mm. The material properties used in this

work are: Young Modulus E=200,000MPa, Poisson's ratio ν=0.3, σ y =260MPa,

χ∞ =200MPa, b=1, γ=2, R∞=300Mpa, and Dc =0.15. Moreover, k D =0.0 MPam2  and
S=7.0Mpa. Here, t denotes a loading parameter.

Here we employed the Quad9 isoparametric element, Dhatt et al. (1984). The
integration scheme used was 3 x 3 x 9 integration, 9 Newton-Cotes points through the
thickness, and it was 3 x 3 Gauss points in ξ  and η  co-ordinates.
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Figure 1 – Geometric illustration of plate.
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Figure 2 – Physical problem (using symmetry).
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Figure 3 – Nonlinear evolution.



6. CONCLUSION

The theoretical approach used in this work allow us to consider a very broad class of
problems with ability to model quite complex phenomena. Moreover, since low cycle
fatigue is strongly related to the accumulated plastic strain, and since we are able to the
model properly quite complex cyclic plastic phenomena under general loading conditions,
we can determine with some accuracy the critical points and the number of cycles that a
given component may withstand before there is a mesocrack nucleation. However, due to
the considerable large number of iterations necessary to perform a low cycle fatigue
analysis we must have an accurate algorithm, with a very high rate of convergence. The
proposed algorithm has accomplished this objective. The disadvantage of this approach is
that once the critical damage is reached, we must in order to continue the analysis employ
the fracture mechanics method.
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Figure 4 – Damage evolution.


